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ABSTRACT: The two major subtypes of human T cells, CD4+ and CD8+, play
important roles in adaptive immune response by their diverse functions. To understand
the structure−function relation at the single cell level, we isolated 2483 CD4+ and 2450
CD8+ T cells from fresh human splenocytes by immunofluorescent sorting and
investigated their morphologic relations to the surface CD markers by acquisition and
analysis of cross-polarized diffraction image (p-DI) pairs. A deep neural network of
DINet-R has been built to extract 2560 features across multiple pixel scales of a p-DI pair
per imaged cell. We have developed a novel algorithm to form a matrix of Pearson
correlation coefficients by these features for selection of a support cell set with strong
morphologic correlation in each subtype. The p-DI pairs of support cells exhibit significant pattern differences between the two
subtypes defined by CD markers. To explore the relation between p-DI features and CD markers, we divided each subtype into two
groups of A and B using the two support cell sets. The A groups comprise 90.2% of the imaged T cells and classification of them by
DINet-R yields an accuracy of 97.3 ± 0.40% between the two subtypes. Analysis of depolarization ratios further reveals the
significant differences in molecular polarizability between the two subtypes. These results prove the existence of a strong structure−
function relation for the two major T cell subtypes and demonstrate the potential of diffraction imaging flow cytometry for accurate
and label-free classification of T cell subtypes.

■ INTRODUCTION

Human T cells in vasculature and lymphoid organs consist of
numerous functional subtypes and are essential to develop
adaptive immunity against viral infections and certain tumors.
Some forms of structure−function relation have been
identified for T cells. Activation of CD4+ T cells has been
found to correlate with changes in mechanical interaction with
other cells,1 and that of CD8+ T cells to correlate with changes
in dry mass.2 Past efforts on classification of T cell subtypes by
morphologic differences, however, have achieved little
success.3−6 Immunophenotyping is currently the only method
to define and recognize subtypes of primary T cells in
particular and primary lymphocytes in general.7 Among
numerous subtypes of T cells, the CD4+ and CD8+ are the
two major ones that exhibit high plasticity to differentiate into
distinct effector forms, and their enumeration has been widely
used as a clinical tool-of-choice to monitor immunodeficiency
and effectiveness of therapy and vaccine.8−12 However,
immunophenotyping relies on specific binding of endogenous
and fluorochrome-conjugated CD antigens or markers to the
surface receptors. The complex staining procedures and
reagent costs add barriers to wide applications beyond the
drawbacks of cytotoxicity, affinity variation, and fluorophore
instability.13,14 Consequently, development of a label-free
method for recognition of T cell subtypes can yield a valuable
means for applications, where immunophenotyping is

impractical. More importantly, critical insights can be gained
from investigations on morphologic relations among T cells
within the same subtype and between different subtypes
defined by the surface CD markers to reveal the dependence of
functions on their molecular interiors.
Previous imaging studies of human T cells’ morphology,

qualitative or quantitative, have been performed using methods
of optical or electronic microscopy.2−6 These methods are
based on acquisition of 2D images, which consist of pixels with
intensity proportional to the numbers of photons or electrons
emitted from the imaged cell following excitation. If a pixel or a
set of neighboring pixels corresponds to one and only one local
region of the cell, the smallest size of the region resolved by the
image defines the spatial resolution of imaging, and the lower
bound is limited by the diffraction nature of light or electron
wavefields. Although the morphology of a cell is three-
dimensional (3D), this principle of local imaging design leads
to the 2D nature of morphological features extracted from the
acquired images. To improve this, a stack of 2D images can be
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acquired from the same cell to reconstruct its 3D morphology
by, for example, fluorescent confocal microscopy or diffraction
tomography.15,16 The 3D reconstruction approach, however, is
often disadvantaged by the very low throughput rate because
both image stack acquisition and subsequent processing are
time consuming.
Different from the local imaging methods, we have

developed an approach of diffraction imaging and pattern
analysis for classification of different particle types by recording
coherent light scattered in the side directions, which is
achieved using a single-shot method of polarization diffraction
imaging flow cytometry (p-DIFC) for rapid assay of single
cells.17−19 The p-DIFC method acquires one pair of cross-
polarized diffraction images (p-DI) per cell by splitting the
scattered light into s- and p-polarized components. Each pixel
in a p-DI pair has its intensity determined by superposition of
coherent wavefields emitted from all molecules in the imaged
cell illuminated by a laser beam. Because the intracellular
distribution of the refractive index (RI) determines the spatial
distribution of the scattering light, one can regard each p-DI
pair as a coded representation of the RI distribution
homologous to the 3D morphology of cell. It is widely
known that the type and spatial distribution of intracellular
molecules determine RI distribution by their polarizability.
Consequently, the diffraction pattern features learned from a p-
DI pair carry rich information on morphology or molecular
interiors for cell classification without reconstruction. Numer-
ical modeling of light scattering by single cells verifies the cell
assay capability of diffraction imaging.20−22 With machine
learning of the diffraction patterns embedded in p-DI pairs,
accurate and rapid classification has been demonstrated
experimentally for various immortalized cancer cells including
Jurkat T and Ramos B cells.23−28 However, the ability of the p-
DIFC method to classify primary human T cells phenotyped
by CD markers is unknown because these cells exhibit strong
population heterogeneity in comparison to cell lines
maintained in a controlled environment. Because CD4+ or
CD8+ T cells comprise functional phenotypes of different
cytokine profiles,29 the study of T cell classification without
immunofluorescent labels is a topic of ongoing research.
Important questions remain unanswered such as if and how the
T cell subtypes defined by CD markers have measurable
differences in their morphology-related properties.
In this report, we present a study on the morphologic

implication of CD4+ and CD8+ T cells isolated from fresh
human splenocytes by acquisition and analysis of p-DI pairs. A
novel algorithm has been developed to extract p-DI features for
each T cell using a neural network termed as DINet-R and
rank the cells by a correlation matrix calculated with the feature
vectors of all cells in the same subtype learned by DINet-R. A
set of “support cells” was selected for each T cell subtype by its
correlation ranking and the two support cell sets were used to
divide each subtype into two groups of A and B. With this
algorithm, we have demonstrated for the first time the
existence of high correlation between the 3D morphology
and immunophenotyping of human primary T cells defined by
surface CD markers. The results also show the feasibility for
development of a label-free, robust, and cost-effective approach
to accurate classify white blood cells using the p-DIFC method
beyond the five major types in the current protocol of
complete blood count.30

■ MATERIALS AND METHODS

Under a protocol approved by IRB at East Carolina University
(ECU), microscopic examinations have been carried out on
lymphocytes isolated by centrifugation from peripheral blood
samples of clinical patients with non-hematologic disorders
and spleen tissues of trauma and otherwise healthy patients.
No significant differences in the morphology can be identified
in the isolated lymphocytes of these patients by blood smears
of fixed cells and confocal images of live cells. Based on these
observations, we have performed fluorescence-activated cell
sorting (FACS) to isolate T cells for acquisition of p-DI pairs.
Fresh spleen tissues of two trauma and otherwise healthy
patients were received within hours after surgery from the
Department of Pathology and Laboratory Medicine in the
Brody School of Medicine of ECU. To obtain splenocytes, a
spleen tissue sample was immersed and fragmented with
surgical scissors in a dish filled with RPMI-1640 culture media
(11875101, Fisher Scientific). A cell suspension was prepared
after filtering the fragmented tissue in the RPMI media
through a wire screen of 70 μm in hole size, followed by
centrifugation at 250g for 10 min. Red blood cells (RBCs) in
resuspended cells were then removed by an RBC lysis buffer
(00-4333-57, ThermoFisher) and centrifugation. The remain-
ing splenocytes were washed, viability tested by trypan blue
staining, which is found to be about 85%, and prepared in 1%
BSA in PBS with a pH value of 7.4 as a stock cell suspension
with a concentration of 4.7 × 107 cells/mL. For each spleen
tissue sample, the suspension of splenocytes with 100 μL in
volume was aliquoted into five tubes consisting of four control
tubes with cells, respectively, not stained and singly stained by
CD3 (CD0304, ThermoFisher), CD4 (MHCD0405), and
CD8 (MHCD0801) and one tube with cells triply stained by
CD3, CD4, and CD8 for isolation of the two subtypes. The
control tubes were used to obtain correct gate settings for
scatter and fluorescent channels of the sorter (FACSAria
Fusion, BD Biosciences). To increase purity, the sorting of
CD4+ and CD8+ T cells was repeated and the collected cells
were resuspended to a concentration of about 1 × 106 cells/
mL. Multiple measurements of p-DIFC and confocal imaging
were performed within 48 h from spleen removal.
For p-DI acquisition, each CD4+ or CD8+ cell suspension

sample was pressurized in a sealed tube into a core fluid
channel and injected into the flow chamber of a p-DIFC
system through a glass nozzle to form a core fluid stream. The
schematics of the sample entry port and flow chamber with the
core and sheath fluids indicated is presented as Figure S1 of
the Supporting Information. A continuous-wave laser beam of
λ = 532 nm in wavelength was linear polarized in the vertical
plane with 45o between the vertical and horizontal directions.
The incident beam was focused on the core fluid carrying cells
in a single file by hydrodynamic focusing with the sheath fluid
through the focal spot around 30 μm in diameter under the
laminar flow condition. The scattered light by a moving cell is
collected by an imaging unit within a cone of 20.3o in half
angle centered in the side direction of 90o from the incident
beam direction.31 The imaging unit consists of an infinity-
corrected 50× objective of 0.55 in numerical aperture (378-
805-3, Mitutoyo), a narrow-band filter centered at 532 nm, a
polarizing beam splitter for separating scattering light into s-
and p-polarized components, two tube lenses and CCD
cameras (LM075, Lumenera) for p-DI acquisition, and a
photomultiplier for triggering the cameras. The unit, with each
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camera sensor fixed to the focal plane of its tube lens, can be
translated away from the focusing position toward the flow
chamber to increase the contrast and vary angular field of view
by non-conjugate diffraction imaging.18,31 The p-DI data were
acquired with an off-focus distance set to 80 μm for T cells and
camera exposure time to 0.3 ms. Each image of a p-DI pair
consists of 640 × 480 pixels with pixels of 12-bit in depth.
After injection into the flow chamber of an experimental p-

DIFC system, either CD4+ or CD8+ T cells in culture medium
flows as the core fluid along the vertical direction through the
focal spot of an incident laser beam. The acquired p-DI pairs
were first preprocessed to remove overexposed and under-
exposed pairs. The former is defined to be those with one
image in a pair having the number of saturated pixels larger
than 2% of total pixel number and the latter is defined as those
with both images in a pair having average pixel intensity less
than 2% of the pixel saturation value. The next step is to
identify and remove p-DI pairs by non-cellular particles.
Besides cells, the core fluid of cell suspension also contains
other particles of cellular debris and granules of aggregated
microscopic non-cellular particles, which include powder
residues not fully dissolved in the culture media.

■ RESULTS

Four samples of CD4+ or CD8+ T cells were prepared from
spleen tissues and measured over a period of 6 weeks between
the two patients using the same p-DIFC system. Figure 1A
presents a work flow diagram for cell preparation and p-DI
data acquisition. A total of 7755 p-DI pairs were obtained after
removing 2220 underexposed p-DI pairs and 6 overexposed
ones through preprocessing. Many of the underexposed p-DI
pairs were due to dying cells that suffer significant loss of
ability to scatter light resulted from reduction of RI
heterogeneity by fragmented organelles.32 We have previously
shown by simulations of p-DI pairs with different particle
models that the acquired and preprocessed data can be divided
into three classes of cell, debris, and granule according to their
diffraction patterns in which the debris class also include dying
cells.20,22,32 Guided by these studies, the preprocessed data
were manually separated and labeled and verified by two
coauthors, which were obviously subjective, to train and test
different neural networks to determine an optimized network

architecture. Table 1 shows the numbers of p-DI pairs that
were manually divided into the three classes and Figure 1B

shows 5 examples for each class of the p-DI pairs of cells,
labeled separately by CD markers, debris, and granules. For
DNN-based learning, we have combined the two images in
each pair into green and red channels of one false-color image
as the input data. The two channels were normalized by the
same minimum and maximum pixel values of the p-DI pair to
preserve the intensity ratio of the two cross-polarized images in
the same pair.

Development and First Training of DINet-R for
Ternary Classification. The non-local nature of diffraction
imaging using the p-DIFC method requires no image
segmentation, which fits well to machine learning for extraction
of diffraction pattern features. We have modified a previously
developed network with different combination of convolu-
tional, pooling layers and residual blocks.28,33 The final version
of the network architecture was denoted as DINet-R and is
illustrated in Figure S2 of the Supporting Information. The
DINet-R network was first trained to classify input the p-DI

Figure 1. (A) Work flow diagram of cell preparation and p-DI acquisition: FACS = fluorescence-activated cell sorting; PM = photomultiplier; PBS
= polarizing beam splitter; FC = flow chamber; OBJ = objective, FIL = 532 nm filter; TL = tube lens; and s- or p-CCD = cameras for imaging s-
and p-polarized light. (B) Five examples of p-DI pairs in each class of cells (labeled as CD4+ and CD8+), debris, and granules by manual selection.
Each 12-bit diffraction image is marked on the top with light polarization, followed by minimum, average, and maximum pixel intensities.

Table 1. Distribution of Acquired p-DI Pairs and
Preprocessing by DINet-Ra

cells
accuracy
(%)b

preprocessing of p-DI
data CD4+ CD8+ debris granule Aav ± Astd

manual labeling 2408 2373 2290 684
first training of
DINet-R

4781 2290 684

prediction by first
trained DINet-R

4933 2168 654 95.0 ± 0.63

second training of
DINet-R

2483 2450

prediction by second
trained DINet-R

91.7 ± 0.91

aThe ground-truth labels for first and second training were given,
respectively, by cells vs debris vs granules and CD4+ vs CD8+. bThe
average (Aav) and standard deviation (Astd) values of classification
accuracy A were obtained from five values of A on the five test
datasets based on the 5-fold cross-validation scheme for training and
test.
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data presented in Figure 1B into three classes of cells, debris,
and granules. The same network was subsequently retrained to
perform binary classifications of CD4+ versus CD8+ T cells.
The manually labeled p-DI pairs with possible errors are

listed in Table 1 and are divided randomly into 5 sets for
training and test of DINet-R using a 5-fold cross validation
scheme.28 One set was chosen as the held-out test dataset and
the rest as the training-validation dataset to perform five
rounds of training and test by rotating the test dataset. The
trained DINet-R was employed to identify the p-DI pairs that
were manually labeled as debris or granules but predicted as
cells in each test dataset. These p-DI pairs from the five test
datasets were pooled and relabeled as either CD4+ or CD8+ T
cells based on which cell sample was used to acquire these p-
DI pairs. The upper row of Figure 2 shows the work flow of the
first training of DINet-R. Approximately 90% of the p-DI pairs
in the final class of cells were those manually labeled as cells
and the rest were manually labeled as either debris or granules
and relabeled as cells by the trained DINet-R. The average
value Aav and standard deviation Astd of classification accuracy
among the three classes of cells, debris, and granules were
found to be 95.0 ± 0.63%. The corresponding confusion
matrices are presented in Figure S3 of the Supporting
Information. Table 1 also includes the numbers of T cells
labeled by DINet-R that were taken as the ground-truth labels
for the subsequent binary classification in the results presented
below.
Correlations between Diffraction Pattern Features

and CD Markers. The p-DI pairs of CD4+ and CD8+ T cells
in the form of one false-color image for each pair were
imported into DINet-R for second training and binary
classification of CD4+ versus CD8+ using the same 5-fold
scheme. As shown in Table 1, the classification accuracy was
found to be 91.7 ± 0.91% and the corresponding confusion
matrices are shown in Figure S4 of the Supporting
Information. Even though the above value of Aav is not very
high, the results suggest the existence of correlations between
the T cell subtype defined by CD markers and the diffraction
pattern features. Given the T cells’ heterogeneity by their
diverse functions in each subtype, we strive to develop an
algorithm for selection of certain T cells as “support cells” and
grouping cells in each subtype by these cells. The purpose of
grouping is to gain insights on the relation between the cell
morphology as revealed by p-DI features and cell surface
molecular profiles. It is expected that support cells for each

subtype exhibit high morphologic correlation among them-
selves in the same set and hopefully sufficient dissimilarity
between the two sets by their p-DI data. Existing methods have
been explored for selecting support cells that range from
clustering in the features’ space by density peaks to various
active learning of the input data with noisy labels.34−37 None of
these methods, however, yielded a notably higher accuracy for
binary classification between the two subtypes after grouping
by support cells. A new and novel algorithm for objective
grouping of T cells in a subtype has been developed by ranking
correlations of p-DI features for selection of support cells. Each
subtype was divided into two groups by comparing the
correlation coefficients against the two sets of support cells for
accurate binary classification. The work flow is illustrated in
the lower row of Figure 2.
The algorithm starts from the 2560 features used as the

input to the FC layer of DINet-R after second training with p-
DI pairs of the CD4+ and CD8+ cells listed in Table 1. Let us
denote the ith cell in subtype k as xki, with k = 1 for CD4+ and
k = 2 for CD8+ cells, and the cell can then be represented by a
column vector z(xki) of the p-DI features after a z-score
normalization. Each vector component was defined by

z x
f x x

x
( )

( ) ( )

( )l ki
l ki ki

ki

μ
σ

=
−

(1)

where f l(xki) is the lth feature with l ∈ [1, L] and L = 2560,
μ(xki) and σ(xki) is respectively, the average and standard
deviation value of all features for the cell. The feature vectors
of paired cells in subtype k were used to determine a
correlation matrix [rk] as follows

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz

z

z
z zr

L

x

x
x x1

1

( )
...

( )
( ( ) ... ( ))k

T
k

T
kI

k kI

1

1

k

k
[ ] =

−
(2)

where the superscript T refers to transpose operation. Each
element rk,ij of [rk] is the Pearson correlation coefficient
between cell xki and xkj and thus the matrix is symmetric and of
rank given by total number Ik of cells in subtype k with
diagonal elements of unit values.
Figure 3 presents a portion of the correlation matrices

calculated for the two subtypes, and the complete ones are
plotted in Figure S5 of the Supporting Information. The
diagrams show clearly that the CD4+ T cells are of significantly

Figure 2. Work flow diagram of training and test of DINet-R for ternary and binary classifications of p-DI data, followed by T cell grouping. The
lower row illustrates feature extraction by DINet-R after second training to calculate two symmetric correlation matrices and select support cells for
dividing each subtype into A and B groups.
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higher morphologic correlations within their subtype than the
CD8+ T cells, which is corroborated by the average and
standard deviation values of the Pearson correlation coefficient
for all paired cells as 0.356 ± 0.12 for CD4+ and 0.271 ± 0.12
for CD8+ T cells. Each correlation matrix was used to form a
set of Sk support cells in two steps with Sk set at 10% of Ik for
each subtype.

In the first step, an initial set was created by selecting Sk cells
of largest correlation density defined by

H r r( )ki
j

j i

I

k ij
1

( )

, th

k

∑ρ = −
=

≠ (3)

where H(x) is the Heaviside function with rth as a threshold.
The density ρki for cell xki represents the number of cells
having correlation coefficients larger than rth within each
subtype. The rth value was found to have little effect on the
result of initial selection of support cells by varying it from 0.2
to 0.8 and was set to 0.5 for this study. During the second step,
an enhanced correlation coefficient Rki was calculated for each
cell in subtype k with all cells in the initial support cell set of
the subtype, excluding itself, by the following definition

R rki ki
j

j i

S

k ij
1

( )

,

k

∑ρ=
=

≠ (4)

The final support cell set was determined by the cells of largest
Rki values in subtype k. It is obvious from this procedure that
the support cells must exhibit high correlations with each other
in the set and with other cells in the same subtype as well in
terms of their diffraction feature vectors. Figure 4 presents the
combined diffraction images of 20 randomly selected support
cells for each subtype and they indeed show high similarity of
diffraction patterns within each subtype. More importantly,
pattern dissimilarity can be clearly seen between the two
subtypes. We also observe that the linear depolarization ratio δ,

Figure 3. Upper-right or lower-left half of correlation matrices for 100
T cells of CD4 and CD8 subtypes as marked with the axes
representing cell indices i and j. The color bar indicates matrix
element values given by the Peterson correlation coefficients between
two cells.

Figure 4. Twenty examples of combined images of p-DI pairs randomly selected from support cells of two T cell subtypes with values of linear
depolarization ratio δ marked in each image.
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given by the ratio of average pixel intensity of the s-polarized
and p-polarized DIs in each pair, differs by an order of
magnitude between the two support cell sets.
With the two support cell sets, we divided each T cell

subtype into two groups of A and B, respectively. The group A
consists of cells having stronger correlation with the support
cells in the same subtype k than with support cells in the other
subtype, while group B is made of cells having opposite
relation. Consequently, two support correlation coefficients of
k = 1 and 2 were defined for each cell by

s rki
j

S

k ij
1

,

k

∑=
= (5)

By comparing the two coefficients of ski for each cell, each
subtype k was divided into group A with ski > sk′i and k′
referring to the other subtype and group B with ski ≤ sk′i. Table
2 lists the results of grouping and binary classification for

paired groups between the two T cell subtypes. Each binary
classification took about 2.5 h on one GPU board (GeForce
RTX 2060 S, Nvidia) to complete training and test.
Figure 5 plots histograms of linear depolarization ratios δ

between the two images in each p-DI pair of the support cell
sets, A and B groups of CD4+ and CD8+ T cells. Because the
A groups contain the majority of T cells, these results manifest
the effectiveness of correlation matrix based support cells to
identify those T cells with maximized dissimilarity in

diffraction patterns between the two subtypes defined by
surface CD markers, which also result in accurate subtype
classification by the p-DI data. It is of interest to note in Figure
5 that cell distributions of the A groups resemble closely to
those of the support cell sets between the two subtypes. In
contrast, cell distributions of the B groups show opposite
behaviors with the CD4+ exhibiting a wider range of δ values
than the CD8+ cells. To further confirm these observations, we
applied a technique for 2D visualization of imaged T cell
distribution according to their feature vectors of 2560
components learned by the DINet-R from p-DI pairs.38 Figure
6A shows the scatter plot of all cells in the two subtypes with

CD4+ cells presenting clustering distribution tighter than
CD8+ T cells. This difference in distributions is, interestingly,
reversed in the case of two B groups as illustrated in Figure 6B.
To verify if the total number of the p-DI features can be

reduced from L = 2650 to obtain a similar performance of
binary classification, we have modified the DINet-R structure
by adding another fully connected layer after the FC layer.
This allowed us to select support cells and group the two T cell
subtypes with L = 1920, 1280, and 640 by adjusting the
element number in the new FC layer. After the same steps of
training and test of the modified DINet-R with the 5-fold cross
validation scheme, correlation matrices were calculated to
determine correlation ranking, select support cells, and
grouping each subtype. The values of Aav for binary
classification between the two A groups in CD4+ and CD8+
T cells were found to range from 92.9 to 93.5%, which were
significantly lower than the case of L = 2650. The modified

Table 2. Correlation Grouping and Binary Classifications by
DINet-R

CD4+ (k = 1) CD8+ (k = 2)

results of correlation
grouping and binary

classification A B A B
accuracy (%)
Aav ± Astd

grouping by [rk] with
k = 1 or 2

2330 153 2121 329

binary classification: CD
4+ A vs CD8+ A

2330 2121 97.3 ± 0.40

binary classification: CD
4+ A vs CD4+ B

2330 153 97.1 ± 0.95

binary classification:
CD8+ A vs CD8+ B

2121 329 93.4 ± 0.99

binary classification: CD
4+ B vs CD8+ A

153 2121 93.6 ± 0.38

binary classification:
CD4+ A vs CD8+ B

2330 329 90.0 ± 1.72

Figure 5. Histograms of 4933 T cells in two subtypes with linear depolarization ratio δ as the bin center value and Ncell as the cell number per bin:
(A) all support cells; (B) all cells of A groups with the Ncell value marked on bin of δ = 8.8 for the CD8+ A group; and (C) all cells of B groups.
Insets: same plots on expanded δ scales.

Figure 6. 2D scatter plots of 4933 T cells by application of the
dimension reduction technique to the 2560 diffraction features
extracted for each cell by DINet-R: (A) CD4+ and CD8+ cells; (B) A
and B groups of CD4+ and CD8+ cells.
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DINet-R architecture and detailed results are presented in
Figure S6 and Table S1 of the Supporting Information.

■ DISCUSSION

Previous studies of the T cell morphology were performed by
local imaging, whereas diffraction imaging employed in this
study is of non-local nature. The ability to sense each
dimension of 3D cell morphology on equal foot by image
texture features, with a throughput rate of a few cells per
second by the experimental system, enabled us to investigate
morphologic correlations among T cells phenotyped by the
surface markers of CD4 and CD8 in a way inaccessible before.
The algorithm developed through this study combines 2560
diffraction features learned by DINet-R into a feature vector
for each imaged cell to obtain the Pearson correlation
coefficients with others in each subtype, which was used to
form a matrix as a collective view of morphologic correlations.
The support cell set selected for each subtype by its correlation
matrix exhibits highly similar diffraction patterns within the set
and clear distinction against the other set as shown in Figure 4.
These results provide convincing evidence on a strong
association between the morphology and CD markers for
these T cells. Quantitative insights can be gained by examining
the distributions of depolarization ratio data in Figure 5 and
diffraction feature data in Figure 6. The linear depolarization
ratio δ of each p-DI pair depends on the types and spatial
distribution of intracellular molecules. Given the polarizations
of the incident beam, different δ values indicate different ratios
of molecular types to emit side scatter between p- and s-
polarized ones by their polarizability affecting RI values.20−22

Taken together, these data prove that the support cells and
group A of CD4+ T cells exhibit markedly higher morphologic
correlation than CD8+ T cells isolated from fresh human
splenocytes.
We also note that T cells distribute very differently between

the two subtypes in Figures 5 and 6 by comparing the A groups
to B groups. The CD4+ cells in group A present high
morphologic correlations among each other by their features as
illustrated in Figure 5B, while the CD8+ cells in group A show
considerable heterogeneity in distribution. The support cells
resemble very closely to cells in the A groups. In contrast, the
two B groups in Figure 5C display quite similar and
heterogeneous distributions that are consistent with the
distribution of two B groups shown in Figure 6B. Comparing
the data in the above two figures demonstrates clearly that the
T cells in the B groups mix well among themself and also blend
well with those in the A groups. The distributions of δ and
diffraction feature vectors among the two B groups could be
attributed to the existence of CD4/CD8 double positive (DP)
T cells in peripheral blood and secondary lymphoid organs of
human and other animals.39,40 We thus suggest that the T cells
in the two B groups are likely the DP T cells with very
heterogeneous distributions as revealed in Figures 5 and 6,
which have been reported to be the result of re-expression of
the CD8 coreceptor on mature CD4+ T cells.40 It should be
pointed out that further investigations by p-DIFC measure-
ment are needed to test the above hypotheses, which may
prepare the ground for exploring the structure−function
relation among additional T cell subtypes.
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